ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны. Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F. Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3. В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL. Точки E и F – середины сторон AB и AD параллелограмма ABCD, а отрезки CE и BF пересекаются в точке K. Точка M лежит на отрезке EC, причём BM || KD. Докажите, что площади треугольника KFD и трапеции KBMD равны. Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно. На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что Известно, что многочлен (x + 1)n – 1 делится на некоторый многочлен P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0 чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на k + 1. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
Числа a, b, c таковы, что уравнение x³ + ax² + bx + c = 0 имеет три действительных корня. Докажите, что если –2 ≤ a + b + c ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
На доске написано несколько приведённых многочленов 37-й степени, все коэффициенты которых неотрицательны. Разрешается выбрать любые два выписанных многочлена f и g и заменить их на такие два приведённых многочлена 37-й степени f1 и g1, что f + g = f1 + g1 или fg = f1g1. Докажите, что после применения любого конечного числа таких операций не может оказаться, что каждый многочлен на доске имеет 37 различных положительных корней.
При делении многочлена x1951 – 1 на x4 + x³ + 2x² + x + 1 получается частное и остаток. Найти в частном коэффициент при x14.
Известно, что многочлен (x + 1)n – 1 делится на некоторый многочлен P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0 чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на k + 1.
Докажите, что количество положительных корней многочлена f(x) = anxn + ... + a1x + a0 не превосходит числа перемен знака в последовательности an, ..., a1, a0.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке