ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В вершинах A , B и C равностороннего треугольника ABC со стороной 1 восставлены к его плоскости перпендикуляры и на них взяты точки A1 , B1 и C1 , находящиеся по одну сторону от плоскости ABC , причём AA1 = 4 , BB1 = 5 и CC1 = 6 . Найдите объём многогранника ABCA1B1C1 .

Вниз   Решение


Листок календаря частично закрыт предыдущим оторванным листком (см. рисунок). Вершины A и B верхнего листка лежат на 

сторонах нижнего листка. Четвёртая вершина нижнего листка не видна  — она закрыта верхним листком. Верхний и нижний листки, естественно, равны между собой. Какая часть нижнего листка больше  — закрытая или открытая?

ВверхВниз   Решение


Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

ВверхВниз   Решение


Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.

ВверхВниз   Решение


На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?

ВверхВниз   Решение


Докажите для положительных значений переменных неравенство  .

ВверхВниз   Решение


Высота правильной треугольной призмы ABCA1B1C1 в 4 раза больше ребра основания. Точка D – середина ребра A1B1 , точки E и F расположены на отрезках AD и CB1 соответственно, причём AE = AD , CF=CB1 . Найдите угол между прямой EF и плоскостью, проходящей через ребро BB1 и середину ребра AC .

ВверхВниз   Решение


Все двугранные углы некоторого трёхгранного угла – острые. Докажите, что все его плоские углы – также острые.

ВверхВниз   Решение


Докажите, что плоскость, пересекающая боковую поверхность правильной 2n -угольной призмы, но не пересекающая её оснований, делит ось призмы, её боковую поверхность и объём в одном и том же отношении.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 87287

Темы:   [ Боковая поверхность призмы ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 8,9

Основание наклонной призмы – равносторонний треугольник со стороной a . Одно из боковых рёбер равно b и образует с прилежащими сторонами основания углы 45o . Найдите боковую поверхность призмы.
Прислать комментарий     Решение


Задача 87416

Темы:   [ Боковая поверхность призмы ]
[ Площадь и ортогональная проекция ]
Сложность: 3
Классы: 10,11

Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы.
Прислать комментарий     Решение


Задача 87408

Темы:   [ Куб ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Найдите расстояние между серединами двух скрещивающихся рёбер куба, полная поверхность которого равна 36.
Прислать комментарий     Решение


Задача 109341

Темы:   [ Cфера, вписанная в призму ]
[ Боковая поверхность призмы ]
Сложность: 3
Классы: 10,11

Известно, что в некоторую призму можно вписать сферу. Найдите площадь её боковой поверхности, если площадь основания равна S.
Прислать комментарий     Решение


Задача 110323

Темы:   [ Объем призмы ]
[ Боковая поверхность призмы ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, пересекающая боковую поверхность правильной 2n -угольной призмы, но не пересекающая её оснований, делит ось призмы, её боковую поверхность и объём в одном и том же отношении.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .