Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Сторона основания ABC правильной треугольной пирамиды ABCD равна 4, угол между боковыми рёбрами пирамиды равен arccos . Точки A1 и C1 – середины рёбер AD и CD соответственно, CB1 – высота в треугольнике BCD . Найдите: 1) угол между прямыми AC и B1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки A до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.

Вниз   Решение


Окружность касается сторон угла ABC в точках A и C. Прямая BN пересекает эту окружность в точках M и N, а отрезок AC – в точке K,  BM : MN = 3 : 5.
Найдите  MK : KN.

ВверхВниз   Решение


Около окружности радиуса 3 описана равнобедренная трапеция ABCD  (BC || AD),  площадь которой равна 48. Окружность касается сторон AB и CD в точках K и L. Найдите KL.

ВверхВниз   Решение


В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S?

ВверхВниз   Решение


При повороте треугольника EFG на угол  arccos ⅓  вокруг точки O, лежащей на стороне EG, вершина F переходит в вершину E, а вершина G – в точку H, лежащую на стороне FG. Найдите отношение, в котором точка O делит сторону EG.

ВверхВниз   Решение


В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса BD = 3$ \sqrt{2}$. Найдите длину медианы CE.

ВверхВниз   Решение


В треугольнике ABC  AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что  B1K || BC  и  MA1 || AC.  Докажите, что  ∠AA1K = ∠BB1M.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, угол между боковым ребром и плоскостью основания пирамиды равен arccos . Точки B1 и C1 – середины рёбер BD и CD соответственно, CA1 – высота в треугольнике ACD . Найдите: 1) угол между прямыми BC и A1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки C до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.

ВверхВниз   Решение


В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с острым углом при вершине A . Высота ромба равна 4, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 2 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой AC равно AB .

ВверхВниз   Решение


Высота конуса с вершиной O равна 4, образующая конуса равна 5. Пирамида ABCD вписана в конус так, что точки A и C принадлежат окружности основания, точки B и D принадлежат боковой поверхности, причём точка B принадлежит образующей OA . Треугольники OAC и OBD – равносторонние, причём OB=3 . Найдите объём пирамиды, двугранный угол при ребре AB и радиус сферы, описанной около пирамиды ABCD .

Вверх   Решение

Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 540]      



Задача 87136

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде расположены два шара Q1 и Q2 . Шар Q1 вписан в пирамиду и имеет радиус 2, шар Q2 касается внешним образом шара Q1 и боковых граней пирамиды. Его радиус равен 1. Найдите площадь боковой поверхности пирамиды и угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 110419

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
[ Четырехугольная пирамида ]
[ Построения на проекционном чертеже ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной четырёхугольной пирамиды SABCD равна . Через основание высоты пирамиды проведена плоскость, параллельная медианам SM и BN граней SAB и SBC соответственно. Найдите площадь сечения пирамиды этой плоскостью, если расстояние от вершины пирамиды до этой плоскости равно .
Прислать комментарий     Решение


Задача 110529

Темы:   [ Углы между прямыми и плоскостями ]
[ Объем помогает решить задачу ]
[ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 4
Классы: 10,11

Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите:
  1) угол между прямыми AB и B1C1;
  2) площадь треугольника A1B1C1;
  3) расстояние от точки B до плоскости A1B1C1;
  4) радиус вписанного в пирамиду A1B1C1D шара.

Прислать комментарий     Решение

Задача 110530

Темы:   [ Углы между прямыми и плоскостями ]
[ Объем помогает решить задачу ]
[ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 4
Классы: 10,11

Сторона основания ABC правильной треугольной пирамиды ABCD равна 3, двугранный угол между боковой гранью и плоскостью основания пирамиды равен arccos . Точки A1 и C1 – середины рёбер AD и CD соответственно, AB1 – высота в треугольнике ABD . Найдите: 1) угол между прямыми AC и A1B1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки A до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.
Прислать комментарий     Решение


Задача 110531

Темы:   [ Углы между прямыми и плоскостями ]
[ Объем помогает решить задачу ]
[ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 4
Классы: 10,11

Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, угол между боковым ребром и плоскостью основания пирамиды равен arccos . Точки B1 и C1 – середины рёбер BD и CD соответственно, CA1 – высота в треугольнике ACD . Найдите: 1) угол между прямыми BC и A1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки C до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.
Прислать комментарий     Решение


Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .