Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

a и b – две данные стороны треугольника.
  Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
  При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)

Вниз   Решение


D – точка на стороне BC треугольника ABC. B треугольники ABD, ACD вписаны окружности, и к ним проведена общая внешняя касательная (отличная от BC), пересекающая AD в точке K. Докажите, что длина отрезка AK не зависит от положения точки D на BC.

ВверхВниз   Решение


Доказать, что существует бесконечно много таких составных n, что  3n–1 – 2n–1 кратно n.

ВверхВниз   Решение


Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

ВверхВниз   Решение


Окружность радиуса 2 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 30° и 45° соответственно.
Найдите высоту, проведённую из вершины A.

ВверхВниз   Решение


При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа  a + b  и  an + bn  – целые?

ВверхВниз   Решение


Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?

ВверхВниз   Решение


В шестиугольнике ABCDEF  AB = BC,  CD = DE,  EF = FA  и  ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 88]      



Задача 107829

Темы:   [ Шестиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 8,9,10

В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 64856

Темы:   [ Шестиугольники ]
[ Векторы помогают решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

На столе лежал проволочный треугольник с углами x°, y°, z°. Хулиган Коля согнул каждую сторону треугольника на один градус, в результате чего получился невыпуклый шестиугольник c внутренними углами  (x – 1)°,  181°,  (y – 1)°,  181°, (z – 1)°,  181°.  Докажите, что точки сгиба делили стороны исходного треугольника в одном и том же отношении.

Прислать комментарий     Решение

Задача 66224

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Векторы помогают решить задачу ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 9,10

Автор: Белухов Н.

Выпуклый шестиугольник A1A2...A6 описан около окружности ω радиуса 1. Рассмотрим три отрезка, соединяющие середины противоположных сторон шестиугольника. Для какого наибольшего r можно утверждать, что хотя бы один из этих отрезков не короче r?

Прислать комментарий     Решение

Задача 110766

Темы:   [ Шестиугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Вписанные и описанные многоугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

В шестиугольнике ABCDEF  AB = BC,  CD = DE,  EF = FA  и  ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116625

Темы:   [ Шестиугольники ]
[ Многоугольники (неравенства) ]
[ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 9,10,11

Автор: Фольклор

Длина каждой из сторон выпуклого шестиугольника ABCDEF меньше 1. Может ли длина каждой из диагоналей АD, ВЕ и CF быть не меньше 2?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .