Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Пусть движение плоскости переводит фигуру F в фигуру F'. Для каждой пары соответственных точек A и A' рассмотрим середину X отрезка AA'. Докажите, что либо все точки X совпадают, либо все они лежат на одной прямой, либо образуют фигуру, подобную F.

Вниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R, причем AB = CD = EF = R. Докажите, что середины сторон BC, DE и FA образуют правильный треугольник.

ВверхВниз   Решение


Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так, что $ \overrightarrow{AD}$ = $ \overrightarrow{DK}$. Докажите, что треугольник BHD тоже правильный.

ВверхВниз   Решение


Доказать, что  22n–1 + 3n + 4  делится на 9 при любом n.

ВверхВниз   Решение


а)  sin$ \alpha$ + sin$ \beta$ + sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/2;
б)  cos($ \alpha$/2) + cos($ \beta$/2) + cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/2.

ВверхВниз   Решение


Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.

ВверхВниз   Решение


Докажите, что композицию чётного числа симметрий относительно прямых нельзя представить в виде композиции нечётного числа симметрий относительно прямых.

ВверхВниз   Решение


Триангуляцией многоугольника называют его разбиение на треугольники, обладающее тем свойством, что эти треугольники либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек (т. е. вершина одного треугольника не может лежать на стороне другого). Докажите, что треугольники триангуляции можно раскрасить в три цвета так, что имеющие общую сторону треугольники будут разного цвета.

ВверхВниз   Решение


Докажите, что любое движение плоскости является композицией не более чем трех симметрий относительно прямых.

ВверхВниз   Решение


Докажите, что для любого натурального n  10n + 18n – 1  делится на 27.

ВверхВниз   Решение


Каждая из трех прямых делит площадь фигуры пополам. Докажите, что часть фигуры, заключенная внутри треугольника, образованного этими прямыми, имеет площадь, не превосходящую 1/4 площади всей фигуры.

ВверхВниз   Решение


Даны три прямые a, b, c. Пусть T = SaoSboSc. Докажите, что ToT — параллельный перенос (или тождественное отображение).

ВверхВниз   Решение


Даны точки A и B и окружность S. Постройте на окружности S такие точки C и D, что AC| BD и дуга CD имеет данную величину $ \alpha$.

ВверхВниз   Решение


а) Через точку P проводятся всевозможные секущие окружности S. Найдите геометрическое место точек пересечения касательных к окружности S, проведенных в двух точках пересечения окружности с секущей.
б) Через точку P проводятся всевозможные пары секущих AB и CD окружности S (A, B, C, D — точки пересечения с окружностью). Найдите геометрическое место точек пересечения прямых AC и BD.

ВверхВниз   Решение


Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 133]      



Задача 64763

Темы:   [ Выпуклые многоугольники ]
[ Индукция в геометрии ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9,10

В выпуклом n-угольнике проведено несколько диагоналей. Проведённая диагональ называется хорошей, если она пересекается (по внутренним точкам) ровно с одной из других проведённых диагоналей. Найдите наибольшее возможное количество хороших диагоналей.

Прислать комментарий     Решение

Задача 65795

Темы:   [ Выпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Полуинварианты ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 9,10

В некотором выпуклом n-угольнике  (n > 3)  все расстояния между вершинами различны.
  а) Назовём вершину неинтересной, если самая близкая к ней вершина – соседняя с ней. Каково наименьшее возможное количество неинтересных вершин (при данном n)?
  б) Назовём вершину необычной, если самая дальняя от неё вершина – соседняя с ней. Каково наибольшее возможное количество необычных вершин (при данном n)?

Прислать комментарий     Решение

Задача 98039

Темы:   [ Выпуклые многоугольники ]
[ Барицентрические координаты ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 9,10,11

Автор: Фомин Д.

Отмечено 100 точек – N вершин выпуклого N-угольника и  100 – N  точек внутри этого N-угольника. Точки как-то обозначены, независимо от того, какие являются вершинами N-угольника, а какие лежат внутри. Известно, что никакие три точки не лежат на одной прямой, а никакие четыре – на двух параллельных прямых. Разрешается задавать вопросы типа: чему равна площадь треугольника XYZ (X, Y, Z – из числа отмеченных точек). Докажите, что 300 вопросов достаточно, чтобы выяснить, какие точки являются вершинами N-угольника, и чтобы найти его площадь.

Прислать комментарий     Решение

Задача 98594

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Выпуклый N-угольник разбит диагоналями на треугольники (при этом диагонали не пересекаются внутри многоугольника). Треугольники раскрашены в чёрный и белый цвета так, что каждые два треугольника с общей стороной раскрашены в разные цвета. Для каждого N найдите максимум разности количества белых и количества чёрных треугольников.

Прислать комментарий     Решение

Задача 110788

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 7,8,9

Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .