ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана окружность, точка A на ней и точка M внутри нее. Рассматриваются хорды BC , проходящие через M . Докажите, что окружности, проходящие через середины сторон всех треугольников ABC , касаются некоторой фиксированной окружности.

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 329]      



Задача 110791

Темы:   [ Гомотетичные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
[ Касающиеся окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4+
Классы: 9,10,11

Дана окружность, точка A на ней и точка M внутри нее. Рассматриваются хорды BC , проходящие через M . Докажите, что окружности, проходящие через середины сторон всех треугольников ABC , касаются некоторой фиксированной окружности.
Прислать комментарий     Решение


Задача 66976

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Прямая Гаусса ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Автор: Dadgarnia A.

Четырехугольник $ABCD$ описан около окружности $\omega$ с центром $I$. Прямые $AC$ и $BD$ пересекаются в точке $P$, $AB$ и $CD$ – в точке $E$, $AD$ и $BC$ – в точке $F$. Точка $K$ на описанной окружности треугольника $EIF$ такова, что $\angle IKP=90^{\circ}$. Луч $PK$ пересекает $\omega$ в точке $Q$. Докажите, что описанная окружность треугольника $EQF$ касается $\omega$.
Прислать комментарий     Решение


Задача 108221

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Касающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 5-
Классы: 9,10,11

В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой.
Прислать комментарий     Решение


Задача 66926

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
Прислать комментарий     Решение


Задача 55530

Темы:   [ Круг, сектор, сегмент и проч. ]
[ Гомотетия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 5
Классы: 8,9

В данный сегмент вписываются всевозможные пары касающихся окружностей (рис.1). Для каждой пары окружностей через точку касания проводится касающаяся их прямая. Докажите, что все эти прямые проходят через одну точку.

Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .