ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности. На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске? В треугольнике ABC, где AB = BC = 6 и
AC = 2, проведены медиана AA1, высота BB1 и биссектриса CC1. а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках. б) Внутри окружности находится правильный 2n-угольник (n > 2), его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек. В городе Цветочном n площадей и m улиц (m ≥ n + 1). Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города. В треугольнике ABC, где AB = BC = 6 и
AC = 2, проведены биссектриса AA1, высота BB1 и высота CC1. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]
В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что ∠BKC > 90°.
В треугольнике ABC, таком, что AB = BC = 4 и
AC = 2, проведены биссектриса AA1, медиана BB1 и высота CC1.
В треугольнике ABC, где AB = BC = 6 и
AC = 2, проведены медиана AA1, высота BB1 и биссектриса CC1.
В треугольнике ABC, где AB = BC = 4 и
AC = 2, проведены медиана AA1, биссектриса BB1 и высота CC1.
В треугольнике ABC, где AB = BC = 6 и
AC = 2, проведены биссектриса AA1, высота BB1 и высота CC1.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке