ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На ребре BB1 куба ABCDA1B1C1D1 взята точка F так,
что B1F = |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Докажите, что геометрическое место точек, равноудаленных от двух заданных точек пространства, есть плоскость, перпендикулярная отрезку с концами в этих точках и проходящая через середину этого отрезка.
Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
Сторона основания правильной треугольной призмы ABCA1B1C1
равна 4, а боковое ребро равно 3. На ребре BB1 взята точка F , а на
ребре CC1 – точка G так, что B1F=1 , CG=
На ребре BB1 куба ABCDA1B1C1D1 взята точка F так,
что B1F =
Все рёбра правильной шестиугольной призмы
ABCDEFA1B1C1D1E1F1 равны 4. На ребре EE1
взята точка K так, что E1K=
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке