ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город. Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр. На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба. Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15. С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.
На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки
P и Q , причём
Три сферы, радиусы которых равны Пусть AE и CD – биссектрисы равнобедренного треугольника ABC (AB = BC). Докажите, что ∠BED = 2∠AED. Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами? Из точки O на плоскости выходят 4 луча, следующие друг за другом по часовой стрелке: OA, OB, OC и OD. Известно, что сумма углов AOB и COD равна 180°. Докажите, что биссектрисы углов AOC и BOD перпендикулярны. Докажите, что три средние линии разбивают треугольник на четыре равных треугольника. В треугольник ABC вписан ромб ADEF так, что угол A у них общий, а вершина E находится на стороне BC. Найдите сторону ромба, если AB = c и AC = b. Каждая пара противоположных сторон данного выпуклого
шестиугольника обладает следующим свойством: расстояние между
серединами равно |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 508]
а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры MK1, MK2, ..., MKn к его сторонам (или их продолжениям). Докажите, что б) Докажите, что сумма векторов, проведённых из любой точки M
внутри правильного тетраэдра перпендикулярно к его граням, равна
Около окружности описан n-угольник
A1...An; l — произвольная касательная к окружности, не проходящая через
вершины n-угольника. Пусть ai — расстояние от вершины Ai
до прямой l, bi — расстояние от точки касания
стороны
AiAi + 1 с окружностью до прямой l. Докажите, что:
Некоторые стороны выпуклого многоугольника красные,
остальные синие. Сумма длин красных сторон меньше половины периметра, и
нет ни одной пары соседних синих сторон. Докажите, что в этот
многоугольник нельзя вписать окружность.
Каждая пара противоположных сторон данного выпуклого
шестиугольника обладает следующим свойством: расстояние между
серединами равно
Докажите, что если в выпуклом шестиугольнике
каждая из трех диагоналей, соединяющих противоположные
вершины, делит площадь пополам, то эти диагонали пересекаются в одной
точке.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 508]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке