ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В однокруговом футбольном турнире играли n > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков. Пусть AF – медиана треугольника ABC, D – середина отрезка AF, E – точка пересечения прямой CD со стороной AB. Оказалось, что BD = BF. Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002? Назовем многогранник хорошим, если его объем (измеренный в м3 ) численно равен площади его поверхности (измеренной в м2 ). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда? Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB . Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья? По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю. Клетчатый квадрат 100×100 разрезан на доминошки. Двое играют в игру. Каждым ходом игрок склеивает две соседних по стороне клетки, между которыми был проведён разрез. Игрок проигрывает, если после его хода фигура получилась связной, то есть весь квадрат можно поднять со стола, держа его за одну клетку. Кто выиграет при правильной игре – начинающий или его соперник?
В трапеции ABCD с меньшим основанием BC и
площадью, равной 2, прямые BC и AD касаются
окружности диаметром |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 772]
Непересекающиеся окружности S1 , S2 и S3 последовательно вписаны в угол, равный 60o . Найдите площадь четырёхугольника с вершинами в точках пересечения со сторонами этого угла общих внутренних касательных окружностей S1 и S2 и окружностей S2 и S3 , если известно, что радиус окружности S2 равен r , а разность радиусов окружностей S3 и S1 равна a .
В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , имеет с отрезком BC единственную общую точку C , проходит через точку D и пересекает отрезок AD в точке E , отличной от точки D . Найдите расстояние от точки K до прямой CD , если AD=48 , BC=12 .
В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , проходит через точки C и D , пересекает отрезки AD и BC в их внутренних точках. Найдите расстояние от точки K до прямой CD , если AD=49 , BC=36 .
В трапеции ABCD с меньшим основанием BC и
площадью, равной 2, прямые BC и AD касаются
окружности диаметром
В трапеции ABCD с большим основанием BC и
площадью, равной 4
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке