Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Вниз   Решение


Плоскость, параллельная основанию пирамиды, делит её объём на две равные части. В каком отношении эта плоскость делит боковые рёбра пирамиды?

ВверхВниз   Решение


Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .

ВверхВниз   Решение


Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 12 : 13. Найдите отношение радиусов окружностей.

ВверхВниз   Решение


Есть девять борцов разной силы. В поединке любых двух из них всегда побеждает сильнейший. Можно ли разбить их на три команды по три борца так, чтобы во встречах команд по системе "каждый с каждым" первая команда по числу побед одержала верх над второй, вторая – над третьей, а третья – над первой?

ВверхВниз   Решение


Окружность радиуса 3 проходит через вершину B , середины сторон AB и BC , а также касается стороны AC треугольника ABC . Угол BAC — острый, и sin BAC = . Найдите площадь треугольника ABC .

ВверхВниз   Решение


Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку.

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

ВверхВниз   Решение


Основания трапеции равны 2 и 12, а диагонали – 6 и 10. Найдите угол между диагоналями.

Вверх   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 449]      



Задача 111412

Темы:   [ Признаки подобия ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC на средней линии DE, параллельной AB, как на диаметре построена окружность, пересекающая продолжения сторон AC и BC в точках M и N. Найдите MN, если  BC = a,  AC = b,  AB = c.

Прислать комментарий     Решение

Задача 111449

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC гипотенуза AB=c , A = α . Найдите радиус окружности, касающейся катета AC , гипотенузы AB и окружности, описанной около треугольника ABC .
Прислать комментарий     Решение


Задача 111467

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Центр окружности, вписанной в прямоугольный треугольник, находится на расстояниях и от концов гипотенузы. Найдите катеты.
Прислать комментарий     Решение


Задача 111513

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A равен 60o ; AB:AC=3:2 . На сторонах AB и AC расположены соответственно точки M и N так, что BM=MN=NC . Найдите отношение площади треугольника AMN к площади треугольника ABC .
Прислать комментарий     Решение


Задача 111546

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Основания трапеции равны 2 и 12, а диагонали – 6 и 10. Найдите угол между диагоналями.
Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .