ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору? Плоскость, параллельная основанию пирамиды, делит её объём на две равные части. В каком отношении эта плоскость делит боковые рёбра пирамиды? Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что
Окружность с центром в точке M касается сторон угла AOB в точках A и B. Вторая окружность с центром в точке N касается отрезка OA, луча BA и продолжения стороны угла OB за точку O. Известно, что ON : OM = 12 : 13. Найдите отношение радиусов окружностей.
Есть девять борцов разной силы. В поединке любых двух из них всегда побеждает сильнейший. Можно ли разбить их на три команды по три борца так, чтобы во встречах команд по системе "каждый с каждым" первая команда по числу побед одержала верх над второй, вторая – над третьей, а третья – над первой?
Окружность радиуса 3 проходит через вершину B , середины
сторон AB и BC , а также касается стороны AC треугольника
ABC . Угол BAC — острый, и sin Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку. Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число a + b – 1 также является делителем n. Основания трапеции равны 2 и 12, а диагонали – 6 и 10. Найдите угол между диагоналями. |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 449]
В треугольнике ABC на средней линии DE, параллельной AB, как на диаметре построена окружность, пересекающая продолжения сторон AC и BC в точках M и N. Найдите MN, если BC = a, AC = b, AB = c.
В прямоугольном треугольнике ABC гипотенуза AB=c ,
Центр окружности, вписанной в прямоугольный треугольник,
находится на расстояниях
В треугольнике ABC угол A равен 60o ; AB:AC=3:2 . На сторонах AB и AC расположены соответственно точки M и N так, что BM=MN=NC . Найдите отношение площади треугольника AMN к площади треугольника ABC .
Основания трапеции равны 2 и 12, а диагонали – 6 и 10. Найдите угол между диагоналями.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке