ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В пирамиде ABCD длина каждого из рёбер AB и CD равна 4, длина каждого из остальных рёбер равна 3. В эту пирамиду вписана сфера. Найдите объём пирамиды, вершинами которой являются точки касания сферы с гранями пирамиды ABCD .

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 149]      



Задача 111222

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Сфера, вписанная в треугольную пирамиду EFGH , касается одной из граней пирамиды в центре вписанной в эту грань окружности. Найдите объём пирамиды, если FG=3 , HFG = , EFG = -3 arctg , EFH = arctg .
Прислать комментарий     Решение


Задача 111585

Темы:   [ Равногранный тетраэдр ]
[ Объем тетраэдра и пирамиды ]
[ Сфера, вписанная в пирамиду ]
[ Сфера, описанная около пирамиды ]
Сложность: 4
Классы: 10,11

В пирамиде ABCD длина каждого из рёбер AB и CD равна 4, длина каждого из остальных рёбер равна 3. В эту пирамиду вписана сфера. Найдите объём пирамиды, вершинами которой являются точки касания сферы с гранями пирамиды ABCD .
Прислать комментарий     Решение


Задача 116323

Темы:   [ Перпендикулярные плоскости ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде каждое боковое ребро равно 1, а боковые грани равновелики. Найдите объём пирамиды, если известно, что один из двугранных углов при основании — прямой.
Прислать комментарий     Решение


Задача 116516

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна , угол между боковым ребром пирамиды и плоскостью основания равен . Точка M – середина ребра SD, точка K – середина ребра AD. Найдите:

1) объём пирамиды CMSK;

2) угол между прямыми CM и SK;

3) расстояние между прямыми CM и SK.

Прислать комментарий     Решение

Задача 87026

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Отношение объемов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Найдите отношение объёмов параллелепипеда ABCDA1B1C1D1 и тетраэдра ACB1D1 .
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .