Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Число умножили на сумму его цифр и получили 2008. Найдите это число.

Вниз   Решение


Даны положительные числа  a1, a2, ..., an.  Известно, что  a1 + a2 + ... + an ≤ ½.  Докажите, что  (1 + a1)(1 + a2)...(1 + an) < 2.

ВверхВниз   Решение


Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


Паша записал на доске пример на сложение, после чего заменил некоторые цифры буквами, причём одинаковые цифры – одинаковыми буквами, а различные цифры – различными буквами. У него получилось:  КРОСС + 2011 = СТАРТ.  Докажите, что Паша ошибся.

ВверхВниз   Решение


Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

ВверхВниз   Решение


На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ.

ВверхВниз   Решение


Через вершины B и C треугольника ABC проведена окружность, которая пересекает сторону AB в точке K и сторону AC в точке L. Найдите AB, если AK = KB, AL = l, $ \angle$BCK = $ \alpha$, $ \angle$CBL = $ \beta$.

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

ВверхВниз   Решение


Вписанная окружность треугольника ABC  (AB > BC)  касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.

ВверхВниз   Решение


Показать, что если  a > b > 0,  то разность между средним арифметическим и средним геометрическим этих чисел находится между     и  

ВверхВниз   Решение


Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

ВверхВниз   Решение


Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты соответственно точки E и F так, что вписанная в тетраэдр сфера делит отрезок EF , на три части, длины которых относятся как 3:5:4, считая от точки E . Найдите длину отрезка EF .

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 401]      



Задача 111613

Темы:   [ Правильный тетраэдр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11

Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты соответственно точки E и F так, что вписанная в тетраэдр сфера делит отрезок EF , на три части, длины которых относятся как 3:5:4, считая от точки E . Найдите длину отрезка EF .
Прислать комментарий     Решение


Задача 111847

Темы:   [ Три точки, лежащие на одной прямой ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Медиана, проведенная к гипотенузе ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10

Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P   (P ≠ H).  Докажите, что прямая PH проходит через середину отрезка MN.

Прислать комментарий     Решение

Задача 115642

Темы:   [ Ортоцентр и ортотреугольник ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9

AA1 — высота остроугольного треугольника ABC , H — точка пересечения высот, O — центр окружности, описанной около треугольника ABC . Найдите OH , если известно, что AH=3 , A1H=2 , а радиус окружности равен 4.
Прислать комментарий     Решение


Задача 115916

Темы:   [ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

Подобные прямоугольные треугольники ABC и A'B'A с прямыми углами при вершинах B и B' расположены на плоскости так, что точка A' лежит на луче BC за точкой C . Докажите, что центр окружности, описанной около треугольника A'AC , лежит на прямой A'B' .
Прислать комментарий     Решение


Задача 52516

Темы:   [ Средняя линия трапеции ]
[ Диаметр, основные свойства ]
[ Проекция на прямую (прочее) ]
Сложность: 4
Классы: 8,9

Автор: Струков С.

В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.

Прислать комментарий     Решение


Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .