ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 488]      



Задача 111691

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 8,9,10,11

На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

Прислать комментарий     Решение

Задача 115986

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4
Классы: 9,10,11

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.

  а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Прислать комментарий     Решение

Задача 116046

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

Прислать комментарий     Решение

Задача 116721

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 10,11

Пусть p – простое число. Набор из  p + 2  натуральных чисел (не обязательно различных) назовём интересным, если сумма любых p из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.

Прислать комментарий     Решение

Задача 116752

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Углы между прямыми и плоскостями ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 10,11

Внутри выпуклого многогранника выбрана точка P и несколько прямых  l1, ..., ln,  проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  l1, ..., ln,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .