Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 84]
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.
|
|
Сложность: 4+ Классы: 8,9,10
|
Квадрат
ABCD вращается вокруг своего неподвижного
центра. Найдите геометрическое место середин отрезков
PQ, где
P — основание перпендикуляра, опущенного из точки
D на неподвижную
прямую
l, а
Q — середина стороны
AB.
|
|
Сложность: 4- Классы: 9,10
|
Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
Доказать, что K – точка пересечения диагоналей ABCD.
Отрезок AB пересекает две равные окружности и параллелен их линии центров, причём все точки пересечения прямой AB с окружностями лежат между A и B. Через точку A проводятся касательные к окружности, ближайшей к A, через точку B – касательные к окружности, ближайшей к B. Оказалось, что эти четыре касательные образуют четырёхугольник, содержащий внутри себя обе окружности. Докажите, что в этот четырёхугольник можно вписать окружность.
|
|
Сложность: 4 Классы: 8,9,10
|
На сторонах AB и BC параллелограмма ABCD выбраны точки K и L соответственно так, что ∠AKD = ∠CLD.
Докажите, что центр описанной окружности треугольника BKL равноудален от A и C.
Страница:
<< 11 12 13 14 15
16 17 >> [Всего задач: 84]