ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность, причём касательные в точках B и D пересекаются в точке K, лежащей на прямой AC. |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1275]
Четырёхугольник ABCD вписан в окружность, M – точка пересечения его диагоналей, O1 и O2 – центры вписанных окружностей треугольников ABM и CMD соответственно, K – середина дуги AD, не содержащей точек B и C, ∠O1KO2 = 60°, KO1 = 10. Найдите O1O2.
Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.
Четырёхугольник ABCD вписан в окружность, причём касательные в точках B и D пересекаются в точке K, лежащей на прямой AC.
Прямые, касающиеся окружности ω в точках B и D, пересекаются в точке P. Прямая, проходящая через P, высекает на окружности хорду AC. Через точку отрезка AC проведена прямая, параллельная BD. Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях.
Внутри треугольника ABC взята точка K, лежащая на биссектрисе угла BAC. Прямая CK вторично пересекает описанную окружность ω треугольника ABC в точке M. Окружность Ω проходит через точку A, касается прямой CM в точке K и пересекает вторично отрезок AB в точке P, а окружность ω – в точке Q. Докажите, что точки P, Q и M лежат на одной прямой.
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|