ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри треугольника ABC отмечена точка M так, что при этом  ∠BAM = ∠B,  ∠AMB = 100°,  ∠C = 70°.  Докажите, что  BM < AC.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 373]      



Задача 108474

Темы:   [ Длины сторон (неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Известно, что a, b и c — длины сторон треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.

Прислать комментарий     Решение


Задача 108692

Темы:   [ Против большей стороны лежит больший угол ]
[ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 8,9

Докажите, что одна из сторон выпуклого четырёхугольника с диагоналями a и b не превосходит .
Прислать комментарий     Решение


Задача 111781

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с площадями ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
Прислать комментарий     Решение


Задача 115336

Темы:   [ Против большей стороны лежит больший угол ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Внутри треугольника ABC отмечена точка M так, что при этом  ∠BAM = ∠B,  ∠AMB = 100°,  ∠C = 70°.  Докажите, что  BM < AC.

Прислать комментарий     Решение

Задача 115340

Темы:   [ Против большей стороны лежит больший угол ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Точка O — центр описанной окружности вписанного четырёхугольника ABCD . Известно, что ABC > ADC и AOC = BAD = 110o . Докажите, что AB+AD>CD .
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .