ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из точки T провели касательную TA и секущую, пересекающую окружность в точках B и C . Биссектриса угла ATC пересекает хорды AB и AC в точках P и Q соответственно. Докажите, что PA= .

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



Задача 98128

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Автор: Паровян А.

Пусть в прямоугольном треугольнике AB и AC – катеты,  AC > AB.  На AC выбрана точка E, а на BC – точка D так, что  AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как  3 : 4 : 5.

Прислать комментарий     Решение

Задача 102701

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  BD : BE,  если  AD = 8  и  AE = 2.
  б) Сравните площади треугольников BDE и BDF.

Прислать комментарий     Решение

Задача 57157

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия (ГМТ) ]
Сложность: 4
Классы: 9,10

Две окружности пересекаются в точках A и B. Через точку A проведена секущая, вторично пересекающаяся с окружностями в точках P и Q. Какую линию описывает середина отрезка PQ, когда секущая вращается вокруг точки A?
Прислать комментарий     Решение


Задача 64983

Темы:   [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

Четырёхугольник ABCD описан вокруг окружности, касающейся сторон AB, BC, CD, DA в точках K, L, M, N соответственно. Точки A', B', C', D' – середины отрезков LM, MN, NK, KL. Докажите, что четырёхугольник, образованный прямыми AA', BB', CC', DD', – вписанный.

Прислать комментарий     Решение

Задача 115726

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Угол между касательной и хордой ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9

Из точки T провели касательную TA и секущую, пересекающую окружность в точках B и C . Биссектриса угла ATC пересекает хорды AB и AC в точках P и Q соответственно. Докажите, что PA= .
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .