Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]
|
|
Сложность: 4- Классы: 10,11
|
Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.
|
|
Сложность: 4 Классы: 10,11
|
Луноход ездит по поверхности планеты, имеющей форму шара с длиной экватора 400 км. Планета считается полностью исследованной, если луноход побывал на расстоянии по поверхности не более 50 км от каждой точки поверхности и вернулся на базу (в исходную точку). Может ли луноход полностью исследовать планету, преодолев не более 600 км?
|
|
Сложность: 4 Классы: 10,11
|
У белой сферы 12% её площади окрашено в красный цвет. Доказать, что в сферу
можно вписать параллелепипед, у которого все вершины белые.
|
|
Сложность: 4 Классы: 10,11
|
Сторона правильного треугольника равна 11. Центры трёх шаров
находятся в вершинах этого треугольника. Сколько существует
различных плоскостей касающихся одновременно трёх шаров, если
радиусы шаров равны 3, 4, 6.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]