ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.
Два квадрата ABCD и KLMN расположены в пространстве так, что центр
квадрата KLMN совпадает с серединой стороны AB . Точка A лежит на
стороне LM и AM<AL , точка N равноудалена от точек B и C .
Расстояние от точки M до ближайшей к ней точки квадрата ABCD равно
2 Найти все действительные решения уравнения x2+2x sin xy+1=0 . Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся ребра равны c . Найдите радиус описанной сферы. Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°? В треугольнике ABC угол A равен 60o . Пусть BB1 и CC1 — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой B1C1 , лежит на стороне BC . Сколько корней имеет уравнение sin x=x/100 ?
Стороны треугольника a,b и c . Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°. Биссектрисы треугольника ABC пересекаются в точке I, ∠ABC = 120°. На продолжениях сторон AB и CB за точку B отмечены соответственно точки P и Q так, что AP = CQ = AC. Докажите, что угол PIQ – прямой. С помощью циркуля и линейки постройте равносторонний треугольник, у которого одна из вершин была в данной точке, а две другие — на двух данных окружностях. Укажите точки на поверхности куба, из которых диагональ куба видна под наименьшим углом. На плоскости даны три параллельные прямые. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]
В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Даны две окружности $\omega_1$ и $\omega_2$, пересекающиеся в точке $A$, и прямая $a$. Пусть $BC$ – произвольная хорда окружности $\omega_2$, параллельная $a$, а $E$ и $F$ – вторые точки пересечения прямых $AB$ и $AC$ с $\omega_1$. Найдите геометрическое место точек пересечения прямых $BC$ и $EF$.
Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?
На плоскости даны три параллельные прямые.
Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке