ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем  n + 2  грани?

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 185]      



Задача 111288

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AC = CB = 2, ∠ACB = 2 arcsin ⁴⁄₅. Плоскость, перпендикулярная прямой AB, пересекает рёбра AB и AB₁ в точках K и L соответственно, причём AK = ⁷⁄₁₆AB, LB₁ = ⁷⁄₁₆AB₁. Найдите площадь сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 87064

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
[ Ортогональная проекция (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что все грани тетраэдра равны тогда и только тогда, когда они равновелики.
Прислать комментарий     Решение


Задача 115880

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Ортогональная проекция (прочее) ]
[ Решение задач при помощи аффинных преобразований ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10,11

Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем  n + 2  грани?

Прислать комментарий     Решение

Задача 67319

Темы:   [ Равногранный тетраэдр ]
[ Центр масс ]
[ Ортогональная проекция (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 10,11

В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$  – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 64477

Темы:   [ Пространственные многоугольники ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Проектирование помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Окружности, вписанные в сегмент ]
[ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 10,11

Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.
Докажите, что они пересекаются.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .