ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Четырёхугольник ABCD вписан в окружность с диаметром AD ; O — точка пересечения его диагоналей AC и BD является центром другой окружности, касающейся стороны BC . Из вершин B и С проведены касательные ко второй окружности, пересекающиеся в точке T . Докажите, что точка T лежит на отрезке AD . Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
В треугольнике АВС : АС =
На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону AD в точке E . Точка P — основание перпендикуляра, опущенного из точки M на прямую CE . Найдите угол APB . Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?
Площадь прямоугольного треугольника ABC (
Хорды AC и BD окружности пересекаются в точке P . Перпендикуляры к AC и BD , восставленные в точках C и D соответственно, пересекаются в точке Q . Докажите, что прямые AB и PQ перпендикулярны. Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 306]
В треугольнике ABC перпендикуляр, проходящий через середину
стороны AC, пересекает сторону BC в точке M, а перпендикуляр,
проходящий через сторону BC пересекает сторону AC в точке N.
Прямая MN перпендикулярна AB и
MN =
Четырёхугольник ABCD вписан в окружность с диаметром AD ; O — точка пересечения его диагоналей AC и BD является центром другой окружности, касающейся стороны BC . Из вершин B и С проведены касательные ко второй окружности, пересекающиеся в точке T . Докажите, что точка T лежит на отрезке AD .
В треугольнике АВС : АС =
Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.
AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке