ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE. На стороне AC треугольника ABC взята точка D так, что AD:DC=1:2 . Докажите, что у треугольников ADB и CDB есть по равной медиане. Первый рабочий за час делает на 2 детали больше, чем второй рабочий, и заканчивает работу над заказом, состоящим из 621 деталей, на 4 часа раньше, чем второй рабочий выполняет заказ, состоящий из 675 таких же деталей. Сколько деталей делает в час первый рабочий? MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра. Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME – перпендикуляр к CD. Найдите угол AEB. В выпуклом четырёхугольнике, не являющемся параллелограммом, две противоположные стороны равны. Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости? |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 590]
Точка M лежит вне окружности с центром O. Прямая OM пересекает окружность в точках A и B, прямая, проходящая через точку M, касается окружности в точке C, точка H – проекция точки C на AB, а перпендикуляр к AB, восставленный в точке O, пересекает окружность в точке P. Известно, что MA = a и MB = b. Найдите MO, MC, MH, MP и расположите найденные значения по возрастанию.
Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?
Что больше: 20112011 + 20092009 или 20112009 + 20092011?
Известно, что 0 < a, b, c, d < 1 и abcd = (1 – a)(1 – b)(1 – c)(1 – d). Докажите, что (a + b + c + d) – (a + c)(b + d) ≥ 1.
На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 590]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке