ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

   Решение

Задачи

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 769]      



Задача 55593

Темы:   [ Симметрия помогает решить задачу ]
[ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5-
Классы: 8,9

Даны прямая l и точки A и B по одну сторону от нее. Пусть A1 и B1 — проекции этих точек на прямую l. С помощью циркуля и линейки постройте на прямой l такую точку M, чтобы угол AMA1 был вдвое меньше угла BMB1.

Прислать комментарий     Решение


Задача 58341

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5-
Классы: 9,10,11

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.
Прислать комментарий     Решение


Задача 65235

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 5-
Классы: 10,11

В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 66313

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 9,10,11

Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что  AP = BQ.

Прислать комментарий     Решение

Задача 116195

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанные и описанные многоугольники ]
Сложность: 5-
Классы: 10,11

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

Прислать комментарий     Решение

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .