ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Hа сторонах треугольника ABC во внешнюю сторону построены правильные треугольники ABC1, BCA1, CAB1. Hа отрезке A1B1 во внешнюю сторону треугольника A1B1C1 построен правильный треугольник A1B1C2. Докажите, что C – середина отрезка C1C2.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



Задача 116200

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Композиции поворотов ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Hа сторонах треугольника ABC во внешнюю сторону построены правильные треугольники ABC1, BCA1, CAB1. Hа отрезке A1B1 во внешнюю сторону треугольника A1B1C1 построен правильный треугольник A1B1C2. Докажите, что C – середина отрезка C1C2.

Прислать комментарий     Решение

Задача 110184

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Перенос помогает решить задачу ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?

Прислать комментарий     Решение

Задача 32091

Темы:   [ Пятиугольники ]
[ Неравенства с площадями ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перенос помогает решить задачу ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Прислать комментарий     Решение


Задача 110751

Темы:   [ Выпуклые многоугольники ]
[ Выпуклый анализ и линейное программирование ]
[ Неравенства с площадями ]
[ Индукция в геометрии ]
[ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 5+
Классы: 10,11

Каждой стороне b выпуклого многоугольника P поставлена в соответствие наибольшая из площадей треугольников, содержащихся в P, одна из сторон которых совпадает с b. Докажите, что сумма площадей, соответствующих всем сторонам P, не меньше удвоенной площади многоугольника P.
Прислать комментарий     Решение


Задача 109809

Темы:   [ Описанные четырехугольники ]
[ Признаки и свойства параллелограмма ]
[ Конкуррентность высот. Углы между высотами. ]
[ Окружность, вписанная в угол ]
[ Описанные четырехугольники ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .