ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.

Вниз   Решение


В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.

Вверх   Решение

Задачи

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 829]      



Задача 115730

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9,10

Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D, соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.

Прислать комментарий     Решение

Задача 116191

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 10,11

Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 116212

Темы:   [ Средняя линия треугольника ]
[ Средняя линия треугольника ]
[ Конкуррентность высот. Углы между высотами. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

Прислать комментарий     Решение

Задача 116218

Темы:   [ Две пары подобных треугольников ]
[ Вписанный угол равен половине центрального ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10

В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.

Прислать комментарий     Решение

Задача 116356

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9,10

На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём  BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3.  Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .