ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)
В треугольнике ABC точка M – середина стороны BC, AA1, BB1 и CC1 – высоты. Прямые AB и A1B1 пересекаются в точке X, а прямые MC1 и AC – в точке Y. Докажите, что XY || BC . На стороне AC треугольника ABC выбрана точка X . Докажите, что если вписанные окружности треугольников ABX и BCX касаются друг друга, то точка X лежит на окружности, вписанной в треугольник ABC . Назовём натуральное семизначное число удачным, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
В прямоугольном треугольнике ABC гипотенуза AB=c ,
109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока. Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету? Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
Сторона основания ABC пирамиды TABC равна 4, боковое
ребро TA перпендикулярно плоскости основания. Найдите
площадь сечения пирамиды плоскостью, проходящей через
середины рёбер AC и BT параллельно медиане BD
грани BCT , если известно, что расстояние от вершины
T до этой плоскости равно |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 64]
Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями.
Теорема косинусов для тетраэдра.}Квадрат площади
каждой грани тетраэдра равен сумме квадратов площадей трёх остальных
граней без удвоенных попарных произведений площадей этих граней на
косинусы двугранных углов между ними, т.е.
Сторона основания ABC пирамиды TABC равна 4, боковое
ребро TA перпендикулярно плоскости основания. Найдите
площадь сечения пирамиды плоскостью, проходящей через
середины рёбер AC и BT параллельно медиане BD
грани BCT , если известно, что расстояние от вершины
T до этой плоскости равно
Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей?
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 64]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке