ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Поворот помогает решить задачу
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что AD = ⅓ AC, CE = ⅓ CE. Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 144]
Дан выпуклый четырёхугольник ABCD и точка O внутри него.
Известно, что ∠AOB = ∠COD = 120°, AO = OB и CO = OD. Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что
На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что AD = ⅓ AC, CE = ⅓ CE. Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC.
Окружности радиусов r и R касаются друг друга внутренним образом. Найдите сторону правильного треугольника, у которого одна вершина находится в точке касания данных окружностей, а две другие лежат на разных данных окружностях.
Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 144] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|