Страница:
<< 238 239 240 241
242 243 244 >> [Всего задач: 1308]
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
Вася написал верное утверждение:
"В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
"В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.
Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд посажены 2000 деревьев - дубы и баобабы. К каждому дереву
прибита табличка, на которой указано количество дубов среди
следующих
деревьев: дерева, на котором висит табличка, и его соседей.
Можно ли по числам на табличках определить,
какие из деревьев - дубы?
|
|
Сложность: 3+ Классы: 7,8,9
|
N цифр – единицы и двойки – расположены по кругу. Изображенным назовем число,
образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой
стрелки). При каком наименьшем значении
N все четырехзначные числа, запись которых
содержит только цифры 1 и 2, могут оказаться среди изображенных?
Страница:
<< 238 239 240 241
242 243 244 >> [Всего задач: 1308]