ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вася написал верное утверждение:
  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

   Решение

Задачи

Страница: << 238 239 240 241 242 243 244 >> [Всего задач: 1308]      



Задача 109533

Темы:   [ Кубические многочлены ]
[ Теорема о промежуточном значении. Связность ]
[ Теория игр (прочее) ]
[ Производная и экстремумы ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 3+
Классы: 9,10,11

На доске написано:  x³ + ...x² + ...x + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Прислать комментарий     Решение

Задача 116612

Темы:   [ Обыкновенные дроби ]
[ Перебор случаев ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 6,7

Вася написал верное утверждение:
  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

Прислать комментарий     Решение

Задача 116708

Темы:   [ Количество и сумма делителей числа ]
[ Четность и нечетность ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Автор: Жуков Г.

Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?

Прислать комментарий     Решение

Задача 34892

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Последовательности (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд посажены 2000 деревьев - дубы и баобабы. К каждому дереву прибита табличка, на которой указано количество дубов среди следующих деревьев: дерева, на котором висит табличка, и его соседей. Можно ли по числам на табличках определить, какие из деревьев - дубы?
Прислать комментарий     Решение


Задача 110078

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Ребусы ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

N цифр – единицы и двойки – расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Прислать комментарий     Решение


Страница: << 238 239 240 241 242 243 244 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .