ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

В турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что  P = Q.

   Решение

Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1110]      



Задача 116486

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 7,8,9

Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?

Прислать комментарий     Решение

Задача 116623

Темы:   [ Турниры и турнирные таблицы ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

В турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что  P = Q.

Прислать комментарий     Решение

Задача 116678

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Площадь (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10

На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во владения этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

Прислать комментарий     Решение

Задача 116691

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10

В клетках таблицы n×n стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за n ходов.

Прислать комментарий     Решение

Задача 116783

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 5,6

Мальвина испекла 30 пирожков и угощает ими Пьеро, Буратино, Артемона и Арлекина. Через некоторое время оказалось, что Буратино и Пьеро съели столько же, сколько Артемон и Арлекин, а Пьеро и Артемон – в 6 раз больше, чем Буратино и Арлекин. Какое количество пирожков съел каждый, если Арлекин съел меньше всех остальных? (Все съедали пирожки целиком, и каждый съел хотя бы один пирожок.)

Прислать комментарий     Решение

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .