ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Могут ли все корни уравнений x² – px + q = 0 и x² – (p + 1)x + q = 0 оказаться целыми числами, если: |
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1221]
На плоскости нарисовали кривые y = cos x и x = 100 cos(100y) и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите a/b.
На клетки шахматной доски положили рисовые зёрнышки. Количества зёрнышек на каждых двух клетках, имеющих общую сторону, отличались ровно
Могут ли все корни уравнений x² – px + q = 0 и x² – (p + 1)x + q = 0 оказаться целыми числами, если:
Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?
Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|