Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Прямые, касающиеся окружности с центром O в точках A и B, пересекаются в точке M. Найдите хорду AB, если отрезок MO делится ею на отрезки, равные 2 и 18.

Вниз   Решение


Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника.
Верно ли, что четырёхугольник – ромб?

ВверхВниз   Решение


Три простых числа p, q и r, большие 3, образуют арифметическую прогрессию:  q = p + d,  r = p + 2d.  Докажите, что d делится на 6.

ВверхВниз   Решение


а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
б) Какой максимальной длины кусок проволоки можно вырезать из этого каркаса? (Длина ребра куба равна 1 см.)

ВверхВниз   Решение


Точка M делит сторону BC треугольника ABC в отношении BM : MC = 2 : 5, Известно, что $ \overrightarrow{AB} $ = $ \overrightarrow{a}$, $ \overrightarrow{AC} $ = $ \overrightarrow{b}$. Найдите вектор $ \overrightarrow{AM}$.

ВверхВниз   Решение


Решите уравнение

(x2 + x)2 + $\displaystyle \sqrt{x^2-1}$ = 0.

ВверхВниз   Решение


В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?

ВверхВниз   Решение


Автор: Левин М.

Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
а)  cos($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = (p - a)/4R;
б)  sin($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = ra/4R.

ВверхВниз   Решение


Группа восьмиклассников решила поехать во время каникул на экскурсию в Углич. Ежемесячно каждый ученик вносил определённое количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49685 руб. Сколько было в группе учеников и какую сумму внёс каждый?

ВверхВниз   Решение


  Одноклассники Аня, Боря и Вася живут на одной лестничной клетке. В школу они идут с постоянными, но различными скоростями, не оглядываясь и не дожидаясь друг друга. Но если кто-то из них успевает догнать другого, то дальше он замедляется, чтобы идти вместе с тем, кого догнал.
  Однажды первой вышла Аня, вторым Боря, третьим Вася, и какие-то двое из них пришли в школу вместе. На следующий день первым вышел Вася, вторым Боря, третьей Аня. Могут ли все трое прийти в школу вместе?

ВверхВниз   Решение


Докажите, что ha = bc/2R.

ВверхВниз   Решение


На сколько нулей оканчивается число 100!?

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 187]      



Задача 30363

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Может ли n! оканчиваться ровно на пять нулей?

Прислать комментарий     Решение

Задача 30364

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

На сколько нулей оканчивается число 100!?

Прислать комментарий     Решение

Задача 32778

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Дано число 1·2·3·4·5·...·56·57.
  а) Какая последняя цифра этого числа?
  б) Каковы десять последних цифр этого числа?

Прислать комментарий     Решение

Задача 35455

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что число 100! не является полным квадратом.

Прислать комментарий     Решение

Задача 88149

Темы:   [ Текстовые задачи (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 5,6,7

Группа восьмиклассников решила поехать во время каникул на экскурсию в Углич. Ежемесячно каждый ученик вносил определённое количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49685 руб. Сколько было в группе учеников и какую сумму внёс каждый?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .