ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1006]      



Задача 30801

Темы:   [ Планарные графы. Формула Эйлера ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?

Прислать комментарий     Решение

Задача 30802

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 9

Докажите, что граф, имеющий 10 вершин, степень каждой из которых равна 5, – не плоский.

Прислать комментарий     Решение

Задача 30807

Темы:   [ Обход графов ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9

Можно ли составить решётку, изображённую на рисунке
  а) из пяти ломаных длины 8?
  б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)

Прислать комментарий     Решение

Задача 30811

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.

Прислать комментарий     Решение

Задача 30812

Темы:   [ Деревья ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8

Расстоянием между двумя произвольными вершинами дерева будем называть длину простого пути, соединяющего их. Удалённостью вершины дерева назовём сумму расстояний от неё до всех остальных вершин. Докажите, что в дереве, у которого есть две вершины с удалённостями, отличающимися на 1, нечётное число вершин.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .