ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.

   Решение

Задачи

Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 1275]      



Задача 116556

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Задача 32063

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.

Прислать комментарий     Решение


Задача 52877

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней,  OC = 9,  CD = 32.  Найдите длину хорды.

Прислать комментарий     Решение

Задача 52883

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

Расстояния от одного конца диаметра до концов параллельной ему хорды равны 13 и 84. Найдите радиус окружности.

Прислать комментарий     Решение

Задача 54226

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9

На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b.
Найдите основание треугольника.

Прислать комментарий     Решение

Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .