ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор. Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ. Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник. Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.
Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.
Продолжите последовательность: 2, 6, 12, 20, 30, … В трапеции ABCD даны основания AD = 16 и BC = 9. На продолжении BC выбрана такая точка M, что CM = 3,2. Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?
Дана линейка с делениями через 1 см. Проведите какую-нибудь прямую, перпендикулярную данной прямой.
Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.
Можно ли n раз рассадить 2n + 1 человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если а) n = 5; б) n = 10? Восстановите а) треугольник; б) пятиугольник по серединам его сторон. |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 92]
В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?
Восстановите а) треугольник; б) пятиугольник по серединам его сторон.
В выпуклом пятиугольнике ABCDE AB = BC, ∠ABE + ∠DBC = ∠EBD и
∠AEB + ∠BDC = 180°.
Можно ли покрасить 15 отрезков, изображённых на рисунке, в три цвета так, чтобы никакие два отрезка одного цвета не имели общего конца?
Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 92]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке