Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках?

Вниз   Решение


Можно ли расставить на листе клетчатой бумаги крестики и нолики так, чтобы ни на одной горизонтали, вертикали и диагонали нельзя было встретить три одинаковых знака подряд?

ВверхВниз   Решение


Автор: Фольклор

Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.

ВверхВниз   Решение


В трапеции ABCD на боковой стороне AB дана точка K. Через точку A провели прямую l, параллельную прямой KC, а через точку B – прямую m, параллельную прямой KD. Докажите, что точка пересечения прямых l и m лежит на стороне CD.

ВверхВниз   Решение


Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?

ВверхВниз   Решение


Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси вращения? (Осью вращения тела называется прямая, после поворота вокруг которой на любой угол тело совмещается само с собой.)

ВверхВниз   Решение


Автор: Фольклор

У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.

ВверхВниз   Решение


Доказать, что равенство  x² + y² + z² = 2xyz  для целых x, y и z возможно только при  x = y = z = 0.

ВверхВниз   Решение


Для сборки автомобиля Лёше потребовалось купить несколько винтиков и шпунтиков. Когда он подошёл к кассе, выяснилось, что в этот день магазин проводит рекламную акцию, предлагая покупателям или 15-процентную скидку на всю покупку или 50-процентную скидку на шпунтики. Оказалось, что стоимость покупки со скидкой не зависит от выбранного варианта скидки. Сколько денег Лёша первоначально собирался потратить на покупку шпунтиков, если на покупку винтиков он собирался потратить 7 рублей?

ВверхВниз   Решение


Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.

ВверхВниз   Решение


Имеется 19 гирек весов 1, 2, 3, ..., 19 г: девять железных, девять бронзовых и одна золотая. Известно, что общий вес всех железных гирек на 90 г больше общего веса бронзовых. Найдите вес золотой гирьки.

ВверхВниз   Решение


Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что

а) у этого кубика есть две соседние грани, на которых написаны соседние числа;

б) таких пар соседних граней у кубика не меньше двух.

Прав ли он в обоих случаях? Почему?

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

ВверхВниз   Решение


Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.

ВверхВниз   Решение


9 кг ирисок стоят дешевле 10 рублей, а 10 кг тех же ирисок – дороже 11 рублей. Сколько стоит 1 кг этих ирисок?

ВверхВниз   Решение


На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной стороне квадрата.
Найдите величину угла MAK.

ВверхВниз   Решение


На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевёрнут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно?

ВверхВниз   Решение


В столовой предложено на выбор шесть блюд. Каждый день Вася берёт некоторый набор блюд (возможно, не берет ни одного блюда), причём этот набор блюд должен быть отличен от всех наборов, которые он брал в предыдущие дни. Какое наибольшее количество дней Вася сможет питаться по таким правилам и какое количество блюд он в среднем при этом будет съедать за день?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 157]      



Задача 102883

Темы:   [ Правило произведения ]
[ Поворот помогает решить задачу ]
[ Шахматная раскраска ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3-
Классы: 7,8

На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Доказать, что число всех таких расстановок есть точный квадрат.

Прислать комментарий     Решение

Задача 30725

Темы:   [ Правило произведения ]
[ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
  а) Сколькими способами могут выйти пассажиры на этих остановках?
  б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.

Прислать комментарий     Решение

Задача 30730

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Общество из n членов выбирает из своего состава одного представителя.
  а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
  б) Решите ту же задачу, если голосование – тайное, то есть учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.

Прислать комментарий     Решение

Задача 30741

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

Прислать комментарий     Решение

Задача 34931

Темы:   [ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10

В столовой предложено на выбор шесть блюд. Каждый день Вася берёт некоторый набор блюд (возможно, не берет ни одного блюда), причём этот набор блюд должен быть отличен от всех наборов, которые он брал в предыдущие дни. Какое наибольшее количество дней Вася сможет питаться по таким правилам и какое количество блюд он в среднем при этом будет съедать за день?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .