ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если
sin
то один из углов треугольника ABC равен
60o.
Пусть O — центр окружности, описанной около треугольника ABC ,
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK. В прямоугольном треугольнике на гипотенузе AB от вершины A отложим отрезок AD, равный катету AC, а от вершины B - отрезок BE, равный катету BC. Докажите, что длина отрезка DE равна диаметру окружности, вписанной в треугольник ABC.
Даны положительные числа a, b, c, d, причем a>b>c>d. Докажите, что (a+b+c+d)2>a2+3b2+5c2+7d2. Через двор проходят четыре пересекающиеся тропинки (см. план). Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции. Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное. В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.
AB и AC — равные хорды, MAN — касательная, угловая величина дуги BC, не содержащей точки A, равна 200o. Найдите углы MAB и NAC.
Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.
Соедините точки А и В (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия: Расставьте в вершинах пятиугольника действительные числа так, чтобы сумма чисел на концах некоторой стороны была равна 1, на концах некоторой другой стороны была равна 2, ..., на концах последней стороны – равна 5.
Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN.
Трапеция разбита диагоналями на четыре треугольника. Докажите, что треугольники, прилежащие к боковым сторонам, равновелики.
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1. Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера. Разделить a2k – b2k на (a + b)(a² + b²)(a4 + b4)...(a2k–1 + b2k–1). Докажите, что Дано 8 действительных чисел: a,b,c,d,,e,f,g,h. Докажите, что хотя бы одно из 6 чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Даны положительные числа a, b, c, d, причем a>b>c>d. Докажите, что (a+b+c+d)2>a2+3b2+5c2+7d2.
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Дано 8 действительных чисел: a,b,c,d,,e,f,g,h. Докажите, что хотя бы одно из 6 чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно.
Докажите, что замкнутую ломаную длины 1 можно
поместить в круг радиуса 0, 25.
В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке