Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Вниз   Решение


В каждой клетке шахматной доски стоит оловянный солдатик. Все 64 солдатика разной величины. Среди каждых восьми солдатиков, составляющих горизонтальный ряд, выбирают самого большого. После этого из отобранных восьми больших солдатиков выбирают самого маленького. Затем среди каждых восьми солдатиков, составляющих вертикальный ряд, выбирают самого маленького. После этого из отобранных восьми маленьких солдатиков выбирают самого большого. Какой солдатик больше: самый маленький из больших или самый большой из маленьких?

ВверхВниз   Решение


Из точки P, расположенной внутри острого угла BAC, опущены перпендикуляры PC1 и PB1 на прямые AB и AC. Докажите, что  ∠C1AP = ∠C1B1P.

ВверхВниз   Решение


На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.
Докажите, что среди этих точек найдутся две, расстояние между которыми (в пространстве) не превосходит 0,5.

ВверхВниз   Решение


Легко можно разрезать квадрат на два равных треугольника или два равных четырёхугольника.
А как разрезать квадрат на два равных пятиугольника или два равных шестиугольника?

ВверхВниз   Решение


Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

ВверхВниз   Решение


Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?

ВверхВниз   Решение


Узлы бесконечной клетчатой бумаги раскрашены в три цвета. Докажите, что существует равнобедренный прямоугольный треугольник с вершинами одного цвета.

ВверхВниз   Решение


В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что N$ \ge$400.

Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.

ВверхВниз   Решение


Можно ли разрезать квадрат на четыре части так, чтобы каждая часть соприкасалась (т.е. имела общие участки границы) с тремя другими?

ВверхВниз   Решение


Квадрат со стороной 9 клеток разрезали по линиям сетки на 14 прямоугольников таким образом, что длина каждой стороны любого прямоугольника не меньше, чем две клетки. Могло ли оказаться так, что среди этих прямоугольников не было ни одного квадрата?

ВверхВниз   Решение


Вершины B и C треугольника ABC с прямым углом A скользят по сторонам прямого угла с вершиной P. Найдите геометрическое место вершин A, если точки P и A лежат:
  а) по разные стороны от прямой BC;
  б) по одну сторону от прямой BC.

.

ВверхВниз   Решение


Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа освещает круг радиуса, равного высоте, на которой она висит?

ВверхВниз   Решение


Двадцать восемь косточек домино можно разными способами выложить в виде прямоугольника 8×7 клеток. На рис. 1-4 приведены четыре варианта расположения цифр в прямоугольниках. Можете ли вы расположить косточки в каждом из этих вариантов?

ВверхВниз   Решение


Даны прямая l и точки A и B по одну сторону от неё. Постройте путь луча из A в B, который отражается от прямой l по следующему закону: угол падения на $ \varphi$ меньше угла отражения.

ВверхВниз   Решение


В остроугольном треугольнике ABC угол B равен 60o, AM и CN — его высоты, а Q — середина стороны AC. Докажите, что треугольник MNQ — равносторонний.

ВверхВниз   Решение


Найдутся ли такие три натуральных числа, что сумма каждых двух из них – степень тройки?

ВверхВниз   Решение


Для любых чисел a1 и a2, удовлетворяющих условиям  a1 ≥ 0,  a2 ≥ 0,  a1 + a2 = 1,  можно найти такие числа b1 и b2, что  b1 ≥ 0,  b2 ≥ 0,  b1 + b2 = 1,
(5/4a1)b1 + 3(5/4a2)b2 > 1.  Доказать.

ВверхВниз   Решение


В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 629]      



Задача 35075

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?

Прислать комментарий     Решение

Задача 35141

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 8,9

В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?

Прислать комментарий     Решение

Задача 35820

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

98 спичек разложили в 19 коробков и на каждом написали количество спичек в этом коробке. Может ли произведение этих чисел быть нечётным числом?

Прислать комментарий     Решение

Задача 60638

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

Прислать комментарий     Решение

Задача 64539

Темы:   [ Четность и нечетность ]
[ Задачи на проценты и отношения ]
Сложность: 2+

На доске записано несколько последовательных натуральных чисел. Ровно 52% из них – чётные. Сколько чётных чисел записано на доске?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .