Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?

Вниз   Решение


Автор: Панов М.Ю.

В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.

ВверхВниз   Решение


Дана таблица n×n клеток и такие натуральные числа k и  m > k,  что m и  n – k  взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа  a1, ..., ak, ak+1, ..., am, am+1, ..., an.  Тогда в следующей строчке записываются те же числа, но в таком порядке:  am+1, ..., an, ak+1, ..., am, a1, ..., ak.  В первую строчку записываются (по порядку) числа  1, 2, ..., n.  Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.

ВверхВниз   Решение


Площадь данного выпуклого четырёхугольника равна S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


С числом разрешается производить две операции: ``увеличить в два раза'' и ``увеличить на 1''. За какое наименьшее число операций можно из числа 0 получить
а) число 100; б) число n?

ВверхВниз   Решение


Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.

ВверхВниз   Решение


Дан многочлен P(x) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0,  P(a2) = a1P(a3) = a2,  и т.д. Какую степень может иметь P(x)?

ВверхВниз   Решение


Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

ВверхВниз   Решение


Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

ВверхВниз   Решение


В остроугольном треугольнике ABC угол A равен 60°. Докажите, что биссектриса одного из углов, образованных высотами, проведёнными из вершин B и C, проходит через центр описанной окружности этого треугольника.

ВверхВниз   Решение


Из одной точки окружности проведены две хорды, равные 10 и 12. Найдите радиус окружности, если расстояние от середины меньшей хорды до большей равно 4.

ВверхВниз   Решение


Около окружности описан n-угольник  A1...Anl — произвольная касательная к окружности, не проходящая через вершины n-угольника. Пусть ai — расстояние от вершины Ai до прямой lbi — расстояние от точки касания стороны  AiAi + 1 с окружностью до прямой l. Докажите, что:
а) величина  b1...bn/(a1...an) не зависит от выбора прямой l;
б) величина  a1a3...a2m - 1/(a2a4...a2m) не зависит от выбора прямой l, если n = 2m.

ВверхВниз   Решение


Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.

ВверхВниз   Решение


На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?

ВверхВниз   Решение


Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 508]      



Задача 116132

Темы:   [ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

B правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что  ∠XCD = 45°.  Hайдите угол FXE.

Прислать комментарий     Решение

Задача 32136

Темы:   [ Подсчет двумя способами ]
[ Шестиугольники ]
Сложность: 2+
Классы: 7,8,9

На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

Прислать комментарий     Решение

Задача 35179

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Биллиард имеет форму выпуклого четырехугольника ABCD. Из точки K стороны AB выпустили биллиардный шар, который отразился в точках L, M, N от сторон BC, CD, DA, возвратился в точку K и вновь вышел на траекторию KLMN. Докажите, что четырехугольник ABCD можно вписать в окружность.
Прислать комментарий     Решение


Задача 107754

Темы:   [ Невыпуклые многоугольники ]
[ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?
Прислать комментарий     Решение


Задача 35803

Темы:   [ Поворот (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3-
Классы: 9,10

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .