ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров? У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки? На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях: а) N = 3; б) N = 4. Докажите, что:
Существует ли отличный от куба шестигранник, у которого все грани являются равными ромбами? Нарисуйте все лестницы из четырёх кирпичей в порядке убывания, начиная с самой крутой (4, 0, 0, 0) и заканчивая самой пологой (1, 1, 1, 1). Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат? Известно, что an – bn делится на n (a, b, n – натуральные числа, a ≠ b). Доказать, что Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7? Найдите все такие натуральные k, что произведение первых k нечётных простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей, чем первая). Доказать, что в любой бесконечной арифметической прогрессии из натуральных чисел Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты? Петя сложил 100 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат? В каждой клетке таблицы 9×9 записано число, по модулю меньшее 1. Известно, что сумма чисел в каждом квадратике 2×2 равна 0. |
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 1119]
В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?
В каждой клетке таблицы 9×9 записано число, по модулю меньшее 1. Известно, что сумма чисел в каждом квадратике 2×2 равна 0.
Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 1119]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке