Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 168]
|
|
Сложность: 3 Классы: 7,8,9
|
Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что модули корней каждого из двух квадратных трёхчленов x² + ax + b и x² + cx + d меньше 10. Может ли трёхчлен иметь корни, модули которых не меньше 10?
Докажите, что три неравенства
не могут быть все верны одновременно, если числа
a1,
a2,
a3,
b1,
b2,
b3 положительны.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Автобус называется переполненным, если в нем более 50 пассажиров. По дороге едет колонна автобусов (среди которых есть переполненные). Что больше – процент переполненных автобусов или процент пассажиров, которые едут в переполненных автобусах?
|
|
Сложность: 3+ Классы: 8,9,10
|
После просмотра фильма зрители по очереди оценивали фильм целым числом
баллов от 0 до 10. В каждый момент времени рейтинг фильма вычислялся как сумма всех выставленных оценок, делённая на их количество. В некоторый момент времени T рейтинг оказался целым числом, а затем с каждым новым проголосовавшим зрителем он уменьшался на единицу. Какое наибольшее количество зрителей могло проголосовать после момента T?
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 168]