Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

Вниз   Решение


В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

ВверхВниз   Решение


Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

ВверхВниз   Решение


а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
б) В трёхзначном числе зачеркнули среднюю цифру и получили число в 6 раз меньше исходного. Найдите такое трёхзначное число.

ВверхВниз   Решение


На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.

ВверхВниз   Решение


Найдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если

а) AB = 5, BC = 7, CD = DA;

б) AB = 7, BC = CD, DA = 9.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC взята точка M, а на продолжении стороны AC за точку C – точка N, причём  AM = MN.
Докажите, что  BM = CN.

ВверхВниз   Решение


12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.

ВверхВниз   Решение


Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

ВверхВниз   Решение


Докажите, что
а)  S3 $ \leq$ ($ \sqrt{3}$/4)3(abc)2;
б)  3hahbhc $ \leq$ 43$ \sqrt{S}$ $ \leq$ 3rarbrc.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.

ВверхВниз   Решение


Найдите первые 99 знаков после запятой в разложении числа   .

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1008]      



Задача 35296

Темы:   [ Классическая комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

В сериале "Тайна Санта-Барбары" участвует 20 героев. Каждую серию происходит одно из событий: некоторый герой узнаёт Тайну, некоторый герой узнаёт, что кто-то знает Тайну, некоторый герой узнаёт, что кто-то не знает Тайну. Какое наибольшее число серий может продолжаться сериал?

Прислать комментарий     Решение

Задача 35551

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичные дроби (прочее) ]
Сложность: 3+
Классы: 10,11

Найдите первые 99 знаков после запятой в разложении числа   .

Прислать комментарий     Решение

Задача 35598

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В системе связи, состоящей из 2001 абонентов, каждый абонент связан ровно с n другими. Определите все возможные значения n.

Прислать комментарий     Решение

Задача 35632

Тема:   [ Комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г.
Докажите, что весь изюм можно разложить на две чаши весов так, чтобы они показали разность, не превосходящую 1 г.

Прислать комментарий     Решение

Задача 35734

Тема:   [ Степень вершины ]
Сложность: 3+
Классы: 7,8,9

В классе 20 учеников, причём каждый дружит не менее, чем с 14 другими.
Можно ли утверждать, что найдутся четыре ученика, которые все дружат между собой?

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1008]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .