ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Имеется 30 человек, некоторые из них знакомы. Доказать, что число человек, имеющих нечётное число знакомых, чётно.

Вниз   Решение


Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса?

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 4260]      



Задача 35566

Темы:   [ Принцип Дирихле (прочее) ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 9,10

В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса?
Прислать комментарий     Решение


Задача 35571

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 7,8

На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки.
Прислать комментарий     Решение


Задача 35674

Тема:   [ Шахматная раскраска ]
Сложность: 2+
Классы: 7,8

На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?

Прислать комментарий     Решение

Задача 58093

Тема:   [ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n попарно непараллельных прямых. Докажите, что угол между некоторыми двумя из них не больше 180o/n.
Прислать комментарий     Решение


Задача 60352

Темы:   [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9

В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.
Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 4260]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .