ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что треугольник со сторонами a, b и c
остроугольный тогда и только тогда, когда
a2 + b2 + c2 > 8R2.
На плоскости отмечено 2000 точек. Можно ли провести прямую, по каждую сторону от которой лежит 1000 точек?
С помощью циркуля и линейки постройте треугольник по двум сторонам и высоте, опущенной на третью.
Пусть O – точка пересечения диагоналей выпуклого четырёхугольника ABCD. Найдите такие многочлены P(x) и Q(x), что (x + 1)P(x) + (x4 + 1)Q(x) = 1. Решите неравенство В выпуклом 2009-угольнике проведены все диагонали. Прямая пересекает 2009-угольник, но не проходит через его вершины. Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася. Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С. |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
В треугольнике ABC ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.
Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.
В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.
Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.
В треугольник АВС вписана окружность и отмечен её центр I и точки касания P, Q, R со сторонами ВС, СА, АВ соответственно. Одной линейкой постройте точку К, в которой окружность, проходящая через вершины В и С, касается (внутренним образом) вписанной окружности.
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке