ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.

   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 512]      



Задача 67120

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.
Прислать комментарий     Решение


Задача 52408

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пятиугольники ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные многоугольники ]
Сложность: 4-
Классы: 8,9,10

Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.

Прислать комментарий     Решение

Задача 53112

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Дан прямоугольный треугольник ABC с катетами  AC = 3  и  BC = 4.  Через точку C проведена прямая, лежащая вне треугольника и образующая с катетами углы, равные 45°. Найдите радиус окружности, проходящей через точки A, B и касающейся этой прямой.

Прислать комментарий     Решение

Задача 53734

Темы:   [ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC с острыми углами при вершинах A и C взята точка K, причём  ∠AKB = 90°,  ∠CKB = 180° – ∠C.
В каком отношении прямая BK делит сторону AC, если высота, опущенная на AC, делит эту сторону в отношении λ, считая от вершины A?

Прислать комментарий     Решение

Задача 53788

 [Точка Жергона]
Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Теоремы Чевы и Менелая ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

В треугольник вписана окружность. Точки касания соединены с противоположными вершинами треугольника.
Докажите, что полученные отрезки пересекаются в одной точке (точка Жергона).

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .