ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В дугу AB окружности вписана ломаная AMB из двух отрезков  (AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.

   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 352]      



Задача 52468

 [Теорема Птолемея]
Темы:   [ Теорема Птолемея ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

Прислать комментарий     Решение

Задача 52494

 [Задача Архимеда]
Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 4-
Классы: 8,9

В дугу AB окружности вписана ломаная AMB из двух отрезков  (AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.

Прислать комментарий     Решение

Задача 54790

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Острый угол при вершине A ромба ABCD равен 40°. Через вершину A и середину M стороны CD проведена прямая, на которую опущен перпендикуляр BH из вершины B. Найдите угол AHD.

Прислать комментарий     Решение

Задача 56470

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9

На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если  KM = NL,  то  KO = PL.

Прислать комментарий     Решение

Задача 57641

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Частные случаи треугольников (прочее) ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 9,10,11

В равнобедренном треугольнике ABC с основанием BC угол при вершине A равен 80°. Внутри треугольника ABC взята точка M так, что
MBC = 30°  и  ∠MCB = 10°.  Найдите величину угла AMC.

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .