ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На дуге
A1A2n + 1 описанной окружности S
правильного (2n + 1)-угольника
A1...A2n + 1 взята точка A.
Докажите, что:
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.
На сторонах OA и OB четверти AOB круга построены как на диаметрах полуокружности ACO и OCB, пересекающиеся в точке C. Докажите, что: 1) прямая OC делит угол AOB пополам; 2) точки A, C и B лежат на одной прямой; 3) дуги AC, CO и CB равны между собой.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
Четыре дома расположены в вершинах выпуклого четырёхугольника. Где нужно вырыть колодец, чтобы сумма расстояний от него до четырёх домов была наименьшей?
В треугольнике ABC угол A равен 60°. Докажите, что AB + AC ≤ 2BC.
В выпуклом четырёхугольнике две стороны равны 1, а другие стороны и обе диагонали не больше 1. Какое максимальное значение может принимать периметр четырёхугольника?
Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
На сторонах OA и OB четверти AOB круга построены как на диаметрах полуокружности ACO и OCB, пересекающиеся в точке C. Докажите, что: 1) прямая OC делит угол AOB пополам; 2) точки A, C и B лежат на одной прямой; 3) дуги AC, CO и CB равны между собой.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке