Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

Вниз   Решение


Существует ли вписанный в окружность 19-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов?

ВверхВниз   Решение


Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая.

ВверхВниз   Решение


За круглым вращающимся столом, на котором стоят 8 белых и 7 чёрных чашек, сидят 15 гномов. Они надели 8 белых и 7 чёрных колпачков. Каждый гном берёт себе чашку, цвет которой совпадает с цветом его колпачка, и ставит напротив себя, после этого стол поворачивается случайным образом. Какое наибольшее число совпадений цвета чашки и колпачка можно гарантировать после поворота стола (гномы сами выбирают, как сесть, но не знают, как повернётся стол)?

ВверхВниз   Решение


Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

ВверхВниз   Решение


На стороне AC треугольника ABC взяли такую точку D, что угол BDC равен углу ABC. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников ABC и ABD, если BC=1?

ВверхВниз   Решение


Автор: Соколов А.

В остроугольном треугольнике ABC (AB<BC) провели высоту BH. Точка P симметрична точке H относительно прямой, соединяющей середины сторон AC и BC. Докажите, что прямая BP содержит центр описанной окружности треугольника ABC.

ВверхВниз   Решение


На высоте правильного треугольника, сторона которого равна b , как на диаметре построена окружность. Найдите площадь той части треугольника, которая лежит внутри окружности.

ВверхВниз   Решение


Про положительные числа a, b, c, d, e известно, что  a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
Докажите, что среди этих чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

ВверхВниз   Решение


Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если  KL = LM = ,  ∠KLM = 2 arcsin ,  а радиус окружности
равен 1.

ВверхВниз   Решение


В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с третьего знака после запятой (то есть взято приближение α с недостатком с точностью до 0, 01). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

ВверхВниз   Решение


Наиболее точный календарь ввёл в Персии в 1079 году персидский астроном, математик и поэт Омар Альхайями. Восстановите этот календарный стиль, рассмотрев третью подходящую дробь  [365; 4, 7, 1]  к длительности астрономического года. За сколько лет в этом календаре накапливается ошибка в одни сутки?

ВверхВниз   Решение


Евклидово доказательство бесконечности множества простых чисел наводит на мысль определить рекуррентно числа Евклида:
e1 = 2,  en = e1e2...en–1 + 1  (n ≥ 2).  Все ли числа en являются простыми?

ВверхВниз   Решение


Окружность с центром в точке O делит отрезок AO пополам. Найдите угол между касательными, проведёнными из точки A.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 175]      



Задача 52608

Темы:   [ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Окружность с центром в точке O делит отрезок AO пополам. Найдите угол между касательными, проведёнными из точки A.

Прислать комментарий     Решение


Задача 52890

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
Сложность: 3-
Классы: 8,9

Касательная и секущая, проведённые из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, а внутренняя часть секущей равна 10. Найдите радиус окружности.

Прислать комментарий     Решение

Задача 53962

Темы:   [ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в 30 ]
Сложность: 3-
Классы: 8,9

Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

Прислать комментарий     Решение

Задача 52893

Темы:   [ Признаки и свойства касательной ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

AB — диаметр окружности; BC — касательная; D — точка пересечения прямой AC с окружностью. Известно, что AD = 32 и DC = 18. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 53970

Темы:   [ Признаки и свойства касательной ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC — равнобедренный.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 175]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .