ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2247]      



Задача 54069

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2
Классы: 8,9

Сторона параллелограмма втрое больше другой его стороны. Найдите стороны параллелограмма, если его периметр равен 24.

Прислать комментарий     Решение


Задача 54070

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2
Классы: 8,9

Один из углов параллелограмма на 50o меньше другого. Найдите углы параллелограмма.

Прислать комментарий     Решение


Задача 52630

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол равен половине центрального ]
Сложность: 2
Классы: 8,9

В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?

Прислать комментарий     Решение


Задача 34911

Темы:   [ Ромбы. Признаки и свойства ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9,10

Пусть O – точка пересечения диагоналей выпуклого четырёхугольника ABCD.
Докажите, что если равны периметры треугольников ABO, BCO, CDO, DAO, то ABCD – ромб.

Прислать комментарий     Решение

Задача 35162

Темы:   [ Трапеции (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 9,10

В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .