Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Решите уравнение:

$\displaystyle \sqrt{\dfrac{1+2x\sqrt{1-x^2}}{2}}$ + 2x2 = 1.



Вниз   Решение


Дан треугольник со сторонами a, b и c, причём  a ≥ b ≥ cx, y и z – углы некоторого другого треугольника. Докажите, что

bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).

ВверхВниз   Решение


а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

ВверхВниз   Решение


Дана функция    ,   где трёхчлены  x² + ax + b  и  x² + cx + d  не имеют общих корней. Докажите, что следующие два утверждения равносильны:
  1) найдётся числовой интервал, свободный от значений функции;
  2)  f(x) представима в виде:  f(x) = f1(f2(...fn–1(fn(x))...)),  где каждая из функций  fi(x) есть функция одного из видов:   kix + bi, x–1, x².

ВверхВниз   Решение


Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

ВверхВниз   Решение


Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он?

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

ВверхВниз   Решение


Автор: Фольклор

Найти количество нечётных чисел в n-й строке треугольника Паскаля.

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.

ВверхВниз   Решение


При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

ВверхВниз   Решение


В прямоугольной трапеции отношение диагоналей равно 2, а отношение оснований равно 4. Найдите углы трапеции.

ВверхВниз   Решение


O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней,  OC = 9,  CD = 32.  Найдите длину хорды.

ВверхВниз   Решение


В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 542]      



Задача 52643

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.

Прислать комментарий     Решение

Задача 52877

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней,  OC = 9,  CD = 32.  Найдите длину хорды.

Прислать комментарий     Решение

Задача 53603

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3
Классы: 8,9

Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

Прислать комментарий     Решение

Задача 53605

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.

Прислать комментарий     Решение

Задача 53800

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В прямоугольной трапеции отношение диагоналей равно 2, а отношение оснований равно 4. Найдите углы трапеции.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 542]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .